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Long-range spatial correlations for anisotropic 
zero-range processes 

Christian Maestff and Frank Redigt/( 
7 Instituut voor Thearetische Fysica, Leuven, Belgium 
i Department Natuurkunde Universiteit Antwerpen, Belgium 

Received 8 October 1990, i n  final form 9 May 1991 

Abstract. The spatial correlations are investigated for a homogeneous system of indistin- 
guishable panicles undergoing stochastic anisotropic hopping dynamics on the d- 
dimensional lattice, d 3 2 .  The interaction is zero range. i.e. the rate at which panicles 
leave a given site only depends on the occupation number at that rite. A series expansion 
around the independent panicle system is given for the equal time correlations and is 
shown to converge for small times t. The formal t+m limiting expansion is analysed 

two-points function ( ~ ( O ) v ( r l ) - ( ~ ( O ) ) ~ .  This phenomenon of self-organized criticality is 
a direct consequence of the anisotropy causing the system to violate the condition of 
detailed balance, combined with the conservation law forcing a diffusive decay (-t-"/ 'J 

of the temporal correlations. 

!PTmFisP from phich 1 :.arlmpn!P type dcczy ( - r - * !  is derived fer !hP r!1!in!!lry 

1, Introductinn 

Consider a particle system on the d-dimensional lattice Zd. The number of particles 
a t  each site x e Z d  is a non-negative integer q ( x )  and the full particle configuration is 
completely specified by an element 

7 = {q(x); x EZq€N=" ,  

The motion of the particles is described by nearest-neighbour hopping dynamics in 
such a way that the rate at which a particle a t  x moves to a nearest neighbour y, 
I x - y l =  1, depends on the particle configuration only through the number of particles 
which are at x at that time. The particles are indistinguishable and an independent 
particle system therefore has rates proportional to the particle number; it is equivalent 
to a system of independent random walkers. When an interaction is superimposed in 
the above sense on this independent motion, then we speak about a zero-range process. 
It was introduced by Spitzer [ l ]  in 1970 and has been greatly studied since then, see 
the references in [Z]. In particular, the hydrodynamics of the zero-range process has 
been investigated in detail by a number of authors [3-6], and used to test a number 
of fundamental methods and principles of non-equilibrium statistical mechanics, see 
e.g. [7]. 

Here we will be concerned with the microscopic system and ask in what sense a 
zero-range process-with 'small' interactions-can be close to the independent particle 
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system. We must therefore apply a generic perturbation and look for its consequences. 
We have chosen for the time-honoured practice of expanding around an exactly soluble 
model, in this case, that of independent random walkers. While we consider this 
problem to be interesting in itself, our work has been triggered especially by recent 
investigations on the existence of long-range spatial correlations in stationary states 
of generic non-equilibrium conservative dynamics. We refer to [8] for a detailed 
discussion. Similar ideas and arguments as in [8] will be made explicit here for the 
zero-range process. 

The only analysis we know of, investigating this so-called ‘self-organized criticality’ 
for zero-range processes, is a heuristic derivation of the fluctuating hydrodynamics by 
Van Beijeren in [9] for two-dimensional (ZD) dynamics in which the particles jump 
horizontally with rates proportional to the particle number (as for an independent 
system) and with constant rates in  the vertical direction. We will come back to this 
model later. The question we ask here is more general and is for the microscopic 
system: how do  we understand the presence of long-range spatial correlations in generic 
perturbations of the independent particle system? All the perturbations we consider 
make the system anisotropic in the sense that the dynamics no longer possesses the 
full symmetry of the lattice. It is this ingredient together with the conservation law (of 
the number of particles) that is responsible for the weak (algebraic) decay of the 
correlations. The key mechanism by which the system settles down in such a critical 
state is, as we will see, that the temporal correlations, and this even for independent 
particles, have a slow decay. If the stationary state does not possess a local Markov 
property (as in the definition of Gibbs states), then points far away in space must in 
the expansion be connected with each other via spacetime paths with massless propa- 
gator (essentially, the inverse Laplacian). This can be thought of as a non-vanishing 
correction to the usual high temperature expansion in equilibrium statistical mechanics. 
Hence, as the stationary state of these processes generically is not expected to be 
Gibbsian for a local interaction potential, weak decay in space will also be forced 
upon the system. Summarizing, the long-range spatial correlations are caused by the 
free spacetime propagator being massless (as a result of the conservation law) but this 
effect may vanish in special (or non-generic) situations, e.g. in the isotropic case when 
the stationary state is a Gibbs state. 

Note that we do not consider non-equilibrium models with boundary conditions 
driving the system. There is an extensive literature on the critical properties of these 
systems including experimental work [lo-131. We concentrate on homogeneous infinite 
systems and there is no external parameter to tune the model on a critical surface. 

Finally a word on our expansions. The process is started from a product state of 
Poisson measures and we first obtain the expansion for finite times using a Dyson 
formula. For the equal time correlations and under some extra conditions on the rates 
including the case of the Van Beijeren perturbation [9], we show the convergence of 
the perturbation series for small times. We then take the formal f + m limit to obtain 
information about the associated stationary state. The long-range correlations are found 
from a term-by-term analysis of the series. This is explicitly carried out up to second 
order in the expansion parameter for some specific model and we show how imposing 
the condition of detailed balance, by restoring the isotropy of the model, simplifies 
the various terms to make the spatial correlations again short range. 

The next section introduces the notation and definitions of the model. Section 3 
contains the derivation of the perturbation expansion. The discussion of long-range 
correlations is in section 4. 

C Maes and F Redig 
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2. The model 

Let 
dynamics consists of transitions from particle configuration 7 E Nzd to 
x E Z d  and 

be the d unit vectors of Zd pointing in the positive a-direction. The 
where 

(2 .1)  

for S,= the configuration with one particle at site z E Z*, all other sites empty. The 
sum and difference in ( 2 . 1 )  are site-wise. The different particles are indistinguishable. 
The transition rates c,(T(x)) are non-negative functions ofthe particle number q ( x )  = 
0, 1,2 ,  . . . at x E Zd. They can be understood as the probability per unit time that a 
particle jumps from x to x + e, or to x - e,, a = 1 ,  . . . , d, and are written as 

P = 7 + 8, - 8, 

cm(?&x)) = T J ( , x ) + $ e ( T ( x ) )  (2.2) 

where p.(O) = 0, &,( n )  
For a finite volume A c  Z", say with periodic boundary conditions, the master 

equation for the probability PA( TJ;  t )  to find a certain configuration 11 EN" at time 1 3  0 
is 

a 
- P , ( T J ; I ) = ~  2 2 Ic,(.rl(X+e,)+l)P,,(n"."+'; 1 )  
J l  X S A  e = ,  

0 for n E N ,  is the perturbation. 

d 

+ c, ( ~ ( x  - e,)  + 1)P,,( ~ x ~ x - s - .  1 ~ ) - 2 c m ( T ( x ) ) P , , ( T J ;  1 ) ) .  (2.3) 

Usually, one starts with a finite number of particles and then constructs the infinite 
particle dynamics by letting their number diverge (thermodynamic limit). The rates 

dynamics but we will not go into this here, see e.g. [ 5 ]  and [ 1 4 ] .  For example, it suffices 
to take p m ( n ) ,  n E N  a non-decreasing function with 

I I  1\ -.."e +h0- - o + : e f . .  -;+.;-ol m-rlirinnr tn ~ n r . n r a  +he n v i c t ~ n r ~  nF+h;c 1;mitG-n 
,L.', ,,,"DL L 1 1 L 1 1  " L L L 1 " h J  *",,,L 1111111111a1 U"..YIII"II> L" CI.>".C L l l r  C A L . , L b I I C C  "1 LI1 . l  ..1..lL'.16 

P.(n + 1) e'"PAn) 

n > 0, for some constant c. Mathematically, the particle system is a Markov process 
v,, t z g ,  defined 0:: a detxe &se: cf Nz fcr which :he gexera~a: L is firs! defixed 
on local functions f (7). TJ E NZd, by 

d 

U(,)=$ Z" x c , ( l r ( x ) ) [ f ( T J " " + % ) + f ( 7 ~ ~ ~ ~ ~ " ) - - 2 f ( 7 ) 1 .  (2 .4)  
Y E 2  = = I  

We then have that 

( 2 . 5 )  
d 
d t  --IET[f(n)1 = U L f ( T J ! ) I  

with En the expectation in the process ( 2 . 4 )  started from particle configuration 7, 
Let 

denote the finite particle configurations. 5 will be used to specify the positions of I[[ 
independent simple random walkers. The probability that a collection of such walkers 
starting from 6 end up in 6' after time 1 is denoted by P,(& 5'). Obviously, P , ( f ,  5') = O  



4362 

unless 151 = 15'1. For example, if 5, respectively e', correspond to configurations with 
one particle, say at site x and at site y, then P,(& 5')=pr(x,y) and the equations 

C Maes and F Redig 

P o b ,  Y )  = a, ,  

- P ~ X ,  Y)  = t C [ p h ,  Y + em 1 + d x ,  Y + e,)  -~P,(x,  Y )I (2.7) d J 

J t  m = 1  

de!!.. !hC tra.si!io!? pmhahi!ities. 
Since the unperturbed system consists of independent random walkers, it is useful 

to introduce a set of functions of the particle configuration which transform simply 
under this free evolution. Define therefore, for [ E  Cl, q EN", 

D(5, 9)- n, Ds(x-,(5(x)) (2.8) 
rcz 

where 

n !  
(n-k)!  

Dk(n)= -  i f 0 s k s n  

= O  i f k > n  f l€N (2.9) 

is the Poisson polynomial of order k. The following recursion relations will prove to 
be useful: 

(2.10) 
(ii) 

(iii) n D k ( n -  1) = D t + i ( n )  n D k ( n )  = Dk+dn)+kDk(n) .  

Dk( n + 1) = Dk ( n )  + kDk-, ( n )  

Consider now the independent particle system with transition rates c , ( n )  = n,  see (2.2). , 
and let Lo be the corresponding generator, see (2.4). From (2.8) and (2.10) (ii), (iii)) 
we easily find that (see also p 33 in [ 5 ] )  

[LoD(5, . ) I ( ~ ) = I L o D ( . ,  1)1(5) (2.11) 

that is, the action of Lo on the function D(5, 9) is the same both when it acts on the 
5 and on the 9 variables. Hence, if E: is the corresponding expectation for the 
independent system with initial configuration U, then combining (2.11) and (2.5) gives 

GD(5,vr) =ESD(S,, ?) (2.12) 

and the following duality relation holds: 

G(5, a,)= C p,(5,5')D(5' ,  a) .  
c'sn 

From (2.13) it is easy to show that for all p P O ,  the product measure 

(2.13) 

is invariant for the independent particle system, with 9; = Poisson measure on N with 
parameter p having probability distribution 

Pi( n )  = e-'- P n  
n ! '  

(2.15) 
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Moreover, the functions (2.9) span all polynomials r ( n ) ,  n e N  in the sense that 
there are numbers A ( r ,  k ) ,  k E N ,  such that 

m 

r ( n ) =  2 A(r ,k )Dk(n)  
h=O 

P" u,,(f)=eC 1 f ( n ) - .  
m 

" = O  n !  

(2 .16)  

Similarly, local functionsf(q), q E @ ,  which do  not increase too fast as Iql-m, can 
be decomposed as 

f ( v ) = Z  A(f;  5 ) D ( 5 , 7 ) .  (2.17) 
i 

We can thus say that the perturbation 
d 

L t f ( l7)  =$ 1 1 P " ( ? ( x ) ) [ f ( 7 " ' " + * " )  +f(7"-=) -2f (?7)1  (2.18) 
xE+* n = ,  

is completely characterized by the numbers q(5, c), 5, 5'E R, defined by 

L t D ( &  ~ ) = 1 4 ( 5 , 5 ' ) D ( 5 ' . ~ ) .  (2.19) 

Given a specific zero-range process it is of course in general a long but straightforward 
computation to use relations like (2.10) to find the corresponding q(5, 5'). An explicit 
formula can be obtained in terms of the numbers 

t' 

{ A , ( k , l ) , k , / E N , a = l ,  . . . ,  d }  

for which 
m 

L ( n ) D d n ) =  1 L ( k I ) D , ( n ) .  (2.20)  
1-0 

If P " ( n )  is a polynomial of degree a,  then A*(k ,  I ) = O  whenever 12 k + a .  In general, 

9 ( 5 , 5 + I S ~ ) = u ( 5 ( x ) , 5 ( x ) + 1 )  l # O  /+ ((x) 3 0 

s(5,5) = I: 4 5 ( x ) ,  5(x)) (2 .21)  

q(5,  5+ 
x s z "  

= w&(x), 5(x* e<.), 5 ( x ) + O ,  / + 5 ( x ) a o  

and q((,  5') is zero otherwise. IS,, / E  Z, has to be understood as in (2.1)-if l is negative, 
then 111 number of particles have to be removed-and 

u(O,/)=O (2 .22)  

w, (k ,  k', I )  =$  k ' k ! ( - l ) A  k!? L ( j ,  I )  j !  
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As examples, if P m ( n ) =  y for n > O  and a = 1, P . ( n ) = O  otherwise, then 

C Maes and F Redig 

I >  k f O  X t l t l  E 
I !  d k ,  O = Y ( - ~ )  

= O  otherwise 

and 

k !  
2 I !  I >  k rr=l w . . ( S k ' , / ) = - k ' ( - I ) ~ + ' + ' -  Y 

= O  otherwise. 

If P " ( n )  = n 2  for a = 1 and zero otherwise, then 

u(k, I )= -k2  k = I  

= -k k = l - 1  

= O  otherwise 

and 

w , ( k , k ' , i ) = f k '  k = I - 2  a = l  

(2.23) 

(2.24) 

(2.25) 

= O  otherwise. (2.26) 

Obviously, there are many models for which we know the stationary states. The 
easiest way to obtain them is by requiring that the condition of detailed balance be 
satisfied. Formally, from (2.3), if 

c, ( q ( x 1) p( q = c, ( (x * e, ) + 1 ) p( q"'"*'-) (2.27) 

for all q E NZi, x E Zd, a = 1, , . . , d, then P (7) is a reversible measure for the process 
(2.4). If, therefore, we require that for some constants ye 

4 n ) =  Y A n )  a =  1, .  . . , d (2.28) 

and define the probability measures f i ;  on N by 

P" 
c(1) . .  . c ( n )  

& ( q ( x ) =  n ) - Z ; '  (2.29) 

where p is such that the normalization factor zo is finite, then the Gibbs measures 

(2.30) 

are invariant and reversible. It is therefore essential to allow for such anisotropic 
dynamics so that (2.28) is not satisfied, to study the consequences of generic perturba- 
tions of the independent particle system. 
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3. The expansion 

In the perturbed process, for any ctn, 7 EN"', 

(3.4) 

V y ' ( t ) = z  f'dsP:-:(f: f ' ) r $ ' ( r )  ( 3 2 )  
c J o  

r g ' ( t ) = z  q ( 5 , C )  v$-"(t) I > &  
c 

If the perturbation L ,  (or, equivalently, om) is of order y, then V y l ( r )  is of order y' 
and (3.4) represents an expansion around y = 0. 

Of course, it is wrong to say that L, (even for small but fixed y )  is always a 'small' 
perturbation of Lo (e.g. in the sense of Dirichlet forms) since the rates p m ( n )  may very 
well dominate in c , (n ) .  This happens for example in (2.25), (2.26). Still, for fixed n, 
c , ( n ) - n  as y.10. 

The physical interpretation of (3.5) consists of two parts: at time s a collision or 
scattering occurs between IC\ particles to produce 181 new particles with amplitude 
governed by q ( f 3  f ' ) ;  these then evolve freely for a time t - s until the next cnllirion 
occurs. The index I in (3.4) thus counts the number of such collisions that have 
happened since the particles started. Letting y+O (low density of collision points) 
corresponds therefore to some kind of a kinetic limit. 

The first question is to see when (3.4), (3.5) indeed define a convergent expansion 
for the equal time correlation functions of the corresponding zero-range process. We 
have two types of results. 

Proposifion 3.1. Suppose there is a functionf(n),  n E N ,  with s ( a ) =  v , ( f ) < m ,  for all 
a z 0, such that for all n, R 2 0 and for some y < m, 

(3 .6)  
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Then, (3.4). (3.5) define a convergent expansion for EP[D(S, q,)] provided that the 
time I is sufficiently small (see further in (3.15) to see how small). Furthermore, for 
fixed I ,  I V:" ( l ) lS  y1 as y 1 0. 

Remarks on proposition 1 

C Maes and F Redig 

1. Condition (3.6) is satisfied for the van Beijeren perturbation [9] as defined in 
(2.23), (2.24) with f ( n ) -  I .  More generally, we expect that (3.6) holds for every 
perturbation with the { P P ( n ) } ,  uniformly bounded in n. 

2. While the collision kernel q(5 ,  5') can have small amplitude 7, it is still in many 
cases an unbounded function of 5 (or 5'). The assumption (3.6) does not permit this 
in general. However, as we will see in the proof, (3.6) can be replaced by the weaker 
(but more complicated) condition that for all functions F on 0, I 2  1, s a 0  

(3.7) 

This time-integrated form of (3.6) will in some cases be useful to overcome the 
unboundedness of q(5,E') as it is the case that with large probability (at least in 
sufficiently high dimensions) (s-7(x)Sl ,  V x e B d ,  S - - 7  large, even if all the random 
walkers were initially concentrated at one site. 

Proof ofproposition 1.  From the hypothesis (3.6) (only p> 1 to be considered), 

(3.8) 

then, again by (3.6) the same bound also holds for 1+1 replacing I in (3.9). 

with distribution 
Let X,, . . . , Xi,, . . b e  independently and identically distributed random variables 

(3.10) 

Then (3.9) can be bounded by 

L ' Y ~ ~ ~ ' ~ [ ~ ' ~ ( ~ ) ~ I W [ ( I ~ I + X , + .  . .+X,-,)'I (3.11) 
I !  

where W [  . ]  denotes the expectation with respect to the distribution (3.10). Using 
Cramer's theory of large deviations and Varadhan's formula [ 151, it is easy to show that 

(3.12) 
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with entropy function .. 

From Stirling's formula, we thus obtain that for large /, 

I V : " ( t ) l ~ p " ~ ( y r  e"+'s(p)b)' 

and it sufices io iake 

f < ( y e P + ' s ( p ) b ) - '  

in (3.4) to obtain convergence. 

(3.13) 

(3.14) 

(3.15) 

0 

A global result in time is available for bounded perturbations. For example, if in the 
Van Reijeren perturbation, the ra!e functions are changed for on!y a fini!e number of 
sites (rendering the system inhomogeneous), then the following holds. 

Proposition 3.2. Under the same assumptions as proposition 1 with the RHS of (3.6) 
replaced by the bound y [ f ( R ) / R ! ] ,  the expansion (3.4) converges for all times I <m. 

Proof of proposition 2. Immediate from the proof of proposition 1. We find that 

If we take the formal r-+m limit in (3.4), ( 3 3 ,  we obtain the expansion 
m 

(-"!&.;)),= 1 vy (3.17) 
I=" 

for the correlation functions in the homogeneous stationary state corresponding to 
density ( q ( x ) ) , = p ,  which, we assume, is reached asymptotically if the process was 
started from the Poisson measure up. This makes sense only if indeed there is a unique 
invariant measure for this fixed p. 

In (3.!R), 
V'W= IS1 

€ - P  

(3.18) 

To make this formal expansion more explicit, we rewrite (3.17) via (2.21), (2.22). It 
then becomes 

where 
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and 
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(3.21) 

are new random walk configurations obtained from 6 by changing the number of 
particles at x f e, and x. 

Koiice that if f i = ( n )  = n, then From (3.20) &(m, n ) - 6 , , ,  the unit matrix, a n a  
substitution in (3.18) yields 

Vy1-4 ld'dr Ef[L,Vg-"] = V"-" 5 I > O  

and thus Vg '=  Vyl=O: which is consistent with the discussion (2.11)-(2,15) 

4. Long-range correlations 

We begin by investigating the stationary two-points function ( T ( a ) T ( b ) ) - ,  a, b E Zd, 
for a general perturbation up to first order in the expansion (3.16). From (3.19) we get 

(4.3) 

(4.4) 
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with A , g ( x ) - g ( x + e , ) + g ( x -  e , ) - 2 g ( x ) ,  X E  Zd. Hence 

where 

m 

x ~ ( P ) ~ ~  1 ( L ( 2 ,  k ) p k - K , ( l ,  k)pl+' 
k - 0  

m 

= f  1 [ L ( I ,  k ) - L ( O ,  k ) ( 1 + p ) l p k  
k = O  

= f  ~ , [ c m ( n ) ( n - l - P ) l  (4 .5 )  

is the expectation value in the Poisson measure (2 .14)  of the perturbed rate function 
c , ( n )  multiplied by n - ( l + p )  so that,y,(p)=O whenever c , ( n ) - n .  

We conclude therefore that the first-order two-point function can be written 
simply as 

Note that if the process is isotropic (in the sense of (2.28), then V$8b = O  whenever 
a # b. This is consistent with the discussion at the end of section 2. In general, however, 
the structure function (to first order) 

(4 .7)  

is not analytic around p = O .  That is, if ~ ~ ( p )  #,yJp)  for some a, a'= I , .  . , d, then 
limp-o S ( p )  depends on the way of approach p + 0. This cannot happen for isotropic 
dynamics but for generic perturbations, formula (4 .7)  describes the long-distance 
behaviour ( p  + 0) of a quadrupole field. In real space, to first order in the expansion, 
it implies a decay 

as 1x1 + m. These are the long-range correlations we mention in the title and they are 
of the same form as found in [SI. In particular, this phenomenon is realized for the 
examples (2.23)-(2.26). For the model treated in [9], (2 .23) ,  (2.24), 

i f  a = l  Y -  
X ~ P )  =;[e ' ( l + ~ ) -  11 

= O  otherwise 

For (2.25). (2.26) 

X. . (P)  = t  P 2  i f a = 1  

= O  otherwise. 

(4.9) 

(4.10) 



(4.11) 

~ , d ~ , ~ ~ ( p ) [ ~ - c o s p ~ e ~ + c o s p ' ~ e , - c o s ( p + p ' ) ~ e , ]  
X (4.12) 

~ ~ = , [ 3 - c o s p . e , - c o s p ' . e , - c o s ( p + p ' ) .  e m ]  

and similar expressions can be obtained for still higher correlation functions. In (4.12) 

= f u,(c, ( n n2) - (3 + 2 p )  up( c, ( n) n + ( 2  + 2~ + p2)  vo ( c ,  (n 1) (4.13) 

which is zero if c m ( n ) -  n. We thus get in general that to first order the expectations 
of functions with support separated a distance r in space, in dimension d 2 2 ,  have 
an algebraic decay with magnitude proportional to r-' as r + CO. 

To study the two-points functions ( q ( a ) q ( b ) ) ,  also to higher orders in the 
expansion, we must investigate terms of the form (3.19) with 5 = S. + 8,. After taking 
the expectation with respect to the random walk process &, we get the generalization 
of (4.4), 

VYU)+,,=f Z: Z [K,(2, k ) V ~ ~ ~ " - K " ( l , k ) V ~ ~ ~ ' ~ , ~ , , l  
d m  

= = I  k = o  

x / o a d t x ; , (  C A ~ p , ( a , x ) p , ( b , x ) + ~ , ( a , x ) A , ~ , ( b , x ) l  

(4.14) 
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The first term in (4.14) is exactly of the same form as  see (4.4), and, for the 
same reason, implies the decay (4.8) with suitable coefficients. For the second term, 
which vanishes if 1 = 1, we need information on the higher correlation functions to 
order I- 1 in the expansion. To simplify matters, we take I = 2, the second-order term, 
and we choose the example (2.25), (2.26). Since in this case &(l ,  k ) =  1 if k =  1, 2, 
a = 1 and is zero otherwise, we only have to worry about Vy~:8, and V&)+8, .  Both 
have been computed explicitly with results (4.6)-(4.12). The term k = 1 in the second 
part of (4.14) is then 

$ (,- d f 1 [A, P, (a ,  x)p, (b,  Y 1 +P,(o ,  Y ) A ~  P A  4 x)l  V;L6, 
T Y  

(4.15) 

where we have substituted in (4.6) the coefficients (4.10). Similarly for the k = 2 term, 
we must substitute (4.12) with, for our example, i,, (p) = tp', if (Y = 1 and zero otherwise. 
This term then becomes 

I 
where 

3 + c o s p . e , - c o s p ' ~ e , - c o s ( p + p ' ) . e ,  
R ( p ) - - i  " I  d p ' d  (4.17) 2 (27r) (-w,wld Em=, [3-cosp.  e, - c o s p ' .  e,-cos(p+p'). e-]' 

Bringing all these terms together in (4.14) we conclude that the weak decay of the 
two-point function also persists to second order in the expansion. Again, the corre- 
sponding structure function is homogeneous in the Fourier vector p. The long-distance 
behaviour is, as in (4.8), of quadrupole type. The same idea applies to all perturbations 
where &(n)  is a polynomial of degree at  most two. 

For more general perturbations we have to go back to (4.14) from which we derive 
that for all I>  1, 

where 

and 

Again we see that, in general, generic anisotropy causes the two-point function to 
decay algebraically (as in (4.8)) to every order in the expansion. 
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So far we have treated translation invariant systems. Adding a finite perturbation 
breaks this homogeneity but it is interesting that the effect of long-range correlations 
persists. We demonstrate this by making a first-order calculation for the perturbation 

Ltf( l ) )  =;[11(0""f(l)0~")+f(l)"~-~~)-2f(~~l. (4.21) 

Particles jump independently except if  they are at the origin and want to jump in the 
direction e , .  (4.1) now needs to be replaced by 

On the other hand, 

so that we find that in this case, for a # b, 

( ? ( a ) ;  l)(b))(" 

2-cosp .  e , -cosp ' .  e, 
2:=,[2 - cos p ,  e, -cos p '  . e,] 

X 

As a consequence, to first order ( l l ( a ) l ) ( b ) ) m + ( l l ( a ) ) ~ ( l ) ( b ) ) ~  decays like rF2d, d a 2 ,  
as la - bl = r + CO. We thus get a different (faster) decay than for the translation invariant 
situation but it is still long range. The same behaviour also persists to second order 
and for other perturbations as those discussed in section 3, proposition 2, but we do 
not give the explicit computation here. The effect of replacing d by 2d as 'effective' 
dimension in dynamics where a finite perturbation around the origin is added, can 
also be observed in [16] where a sink/source is added to the simple exclusion process. 
The authors find a decay for the two-point function as r- '2d-2' ,  d > 3 ,  to be compared 
with the rF(d-21 of [I71 where a density gradient is imposed in the system via the 
boundary conditions. 
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